
Composing Dataplane Programs with µP4

Hardik Soni∗ Myriana Rifai† Praveen Kumar∗ Ryan Doenges∗ Nate Foster∗
∗Cornell University †Nokia Bell Labs

Abstract
Dataplane languages like P4 enable flexible and efficient packet-
processing using domain-specific primitives such as programmable
parsers and match-action tables. Unfortunately, P4 programs tend
to be monolithic and tightly coupled to the hardware architecture,
which makes it hard to write programs in a portable and modular
way—e.g., by composing reusable libraries of standard protocols.

To address this challenge, we present the design and implemen-
tation of a novel framework (µP4) comprising a lightweight logical
architecture that abstracts away from the structure of the underly-
ing hardware pipelines and naturally supports powerful forms of
program composition. Using examples, we show how µP4 enables
modular programming. We present a prototype of the µP4 compiler
that generates code for multiple lower-level architectures, including
Barefoot’s Tofino Native Architecture. We evaluate the overheads
induced by our compiler on realistic examples.

CCS Concepts
• Networks → Programmable networks; • Software and its
engineering→Domain specific languages;Retargetable com-
pilers;Modules / packages; Source code generation.
Keywords
Programmable dataplanes, P4, Modularity, Composition.

ACM Reference Format:
Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster.
2020. Composing Dataplane Programs with µP4. In Annual conference of
the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIG-
COMM ’20), August 10–14, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3387514.3405872

1 Introduction
Over the past few years, the synergistic development of packet-
processing hardware and software has changed how networks are
built and run. Hardware models such as RMT [4] offer tremendous
flexibility for customizing the dataplane without having to fabricate
new chips, while languages such as P4 [3, 7] enable specifying rich
packet-processing functions in terms of programmable parsers and
reconfigurable match-action tables (MATs).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405872

To support a variety of targets—e.g., software switches, ASICs,
FPGAs, etc.—P4 allows programmable and fixed-function blocks to
be arranged into different layouts as specified by an architecture dec-
laration. For example, the Portable Switch Architecture (PSA) [10]
models a switch with programmable parsers, programmable ingress
and egress pipelines, aswell as fixed-function schedulers and queues.
However, while this design allows the language to flexibly accom-
modate a range of targets, it also creates a tight coupling between
P4 programs and the underlying architectures, which makes it dif-
ficult to write, compose, and reuse common code fragments across
different programs and architectures.

To illustrate these challenges, consider the two programs shown
in Fig. 1, each written for a simple parser-control-deparser pipeline.
The first program, ether, parses the Ethernet header, modifies the
addresses using next hop (nh) which is supplied as an argument, and
finally deparses the packet. The second program, ipv4, parses the
IPv4 header, uses longest-prefix match to determine the next hop,
decrements the ttl field, and deparses the packet. Note that neither
of these is a complete program: ether is parameterized on the next
hop and so it does not specify forwarding behavior, while ipv4 does
not generate a valid packet—at least, not one that is well-formed
according to the standard networking stacks implemented on end
hosts. To obtain a complete program, we must somehow combine
the code in ether with the code in ipv4, so that ether can transfer
execution control to ipv4 appropriately—e.g., at 1 —and also get
back the value of nh. However, doing this correctly is non-trivial
in P4 today.

In practice, large programs like switch.p4 [6] are typically writ-
ten in a monolithic style. To reuse the code in switch.p4 to im-
plement a different program, say a standalone Ethernet switch,
one would need to somehow detangle the Ethernet-specific func-
tionality from the rest of the program. Conversely, to add support
for a new protocol such as SRv6 [21], one would need to make
numerous changes to the program, including modifying header
type declarations, extending parsers, adding tables, and updating
the control flow. Without a detailed understanding of the entire
program, doing this correctly is extremely difficult. Even worse, P4
programs rely on C preprocessor directives to enable and disable
various inter-related features—an ad hoc and fragile approach that
can easily result in errors [13]. Finally, to port the code from the
V1Model to a new architecture, say PSA, one would need to replace
the V1Model metadata and externs with PSA-specific ones and also
restructure the program to conform to PSA’s pipeline.

To address these challenges, this paper presents µP4—a new
framework with a logical architecture that provides fine-grained
abstractions for constructing and composing dataplane programs.
Similar to Click [24], µP4 distills packet processing to its logical
essence and abstracts away from hardware-level structures. This
approach enables writing programs in a modular way, drawing on
functions defined in simple programs and reusable libraries of code

https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3387514.3405872

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

parser P(packet_in pin , out hdr_t ph) {

state start { pin.extract(ph.eth); }

}

control C(inout hdr_t ph, inout sm_t sm,

in bit <16> nh) { // Needs next -hop [nh]

action drop() {}

action forward(bit <48> dst_mac , bit <48> src_mac ,

bit <8> port) {

ph.eth.dstMac = dst_mac;

ph.eth.srcMac = src_mac;

sm.out_port = port;

}

table forward_tbl {

key = { nh : exact; }

actions = { forward; drop; }

}

apply { 1 forward_tbl.apply(); }

}

control D(packet_out po, in hdr_t ph) {

apply { po.emit(ph.eth); }

}

(a) ether.p4: Parses and processes L2 Ethernet headers using next-hop nh.

// Expects a (partial) packet starting at IPv4 header

// Sets out param [nh] based on dstAddr

parser P(packet_in pin , out hdr_t ph) {

state start { pin.extract(ph.ipv4); }

}

control C(inout hdr_t ph, out bit <16> nh ,

inout sm_t sm) { // sets [nh]

action process(bit <16> next_hop) {

ph.ipv4.ttl = ph.ipv4.ttl - 1;

nh = next_hop; // set out param [nh]

}

table ipv4_lpm_tbl {

key = { ph.ipv4.dstAddr : lpm; }

actions = { process; }

}

apply { ipv4_lpm_tbl.apply(); }

}

control D(packet_out po, in hdr_t ph) {

apply { po.emit(ph.ipv4); }

}

(b) ipv4.p4: Parses and processes L3 IPv4 headers to identify next-hop.
Figure 1: Example P4 code snippets to illustrate the need for composing dataplane programs.

to specify rich packet-processing functionality—e.g., it enables the
kind of composition needed above for ether and ipv4 to build a
modular router (§4). The µP4 compiler maps composite programs
onto standard P4 architectures, composing parsers and MATs from
multiple programs in complex and user-defined ways. To do this, it
generates the code needed to emulate the logical packet-processing
behavior using the available elements in the underlying pipeline,
making use of static analysis and optimizations to partition the
functionality while conserving hardware-level resources such as
storage for headers and metadata.

Prior work on languages such as Pyretic [26] offer composable
abstractions for OpenFlow switches, while systems such as HyPer4
[18], HyperV [37], and P4Visor [38] focus onmerging target-specific
P4 programs to execute on a single device. To construct practical
dataplanes, we need to support more powerful forms of composition
while retaining the ability to express complex packet processing–
e.g., cloning and replication. µP4 enables these using logical buffers
that interact along well-defined interfaces.

Overall, this paper makes the following contributions:
• We identify challenges in making dataplane programming mod-
ular, composable and portable (§2).

• We design a new framework, µP4, that enables fine-grained com-
position of dataplane programs in a portable manner, and we
develop a case study using µP4 to build a modular router (§3-4).

• We develop techniques for compiling a µP4 program to multiple
P4 targets, including merging program pieces and scheduling
them on a packet-processing pipeline (§5).

• We prototype a µP4 compiler which targets two different archi-
tectures, including Barefoot’s Tofino, showing that it is feasible
to build and run complex dataplanes with µP4 within practical
hardware resource constraints (§6-7).

While much work remains to fully achieve the vision of modular
dataplane programming—e.g., developing libraries and optimiza-
tions, etc.—we believe µP4 presents a promising first step (§8).
Ethical concerns. This work does not raise any ethical issues.

2 Goals, Challenges and Insights

Goals. Our overall goal is to enable dataplane programming in
a modular, composable, and portable manner, as we define in the
next few paragraphs.
Modular: It should be possible to write individual packet-processing
functions in an independent manner agnostic of other dataplane
functions. For example, one should be able to define Ethernet and
IPv4 packet-processing functionality as separate modules.
Composable: It should be easy to flexibly compose individual func-
tions to construct larger dataplane programs. For example, in Fig. 1,
imagine combining ether with ipv4, or any other routing scheme
(e.g., IPv6, MPLS etc.) with a compatible interface and semantics,
to obtain a modular router.
Portable: It should be easy to port programs to other architectures,
say PSA, V1Model, or NetFPGA’s SimpleSUMESwitch [19], with-
out having to modify the source code. Following the “write-once,
compile-anywhere” philosophy, programs should be loosely cou-
pled to architectures and be based on general constructs that a
compiler maps to architecture-specific constructs.
Challenges. We identify three main challenges in achieving these
goals with the current P4 programming model.
C1. P4 programs are monolithic. P4 programs tend to be written
in a monolithic style, with a “flat” top-level structure and a single
collection of parsed headers andmetadata that are threaded through
the entire program. For example, in Fig. 2, PSA’s ingress parser
initializes headers and metadata that are subsequently processed
by the ingress control. To reuse the code for ingress control block
in a different context, the new parser would have to use the same
headers and metadata as the original parser. While it is possible to
restrict parameters and variables using lexical scope, the same is
not true of types, parsers, and controls. In practice, programmers
often use headers and metadata in unrestricted ways [6]—i.e., their
programs lack the forms of abstraction and encapsulation needed

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Programmable block Fixed function block

parser verify CS
control

ingress
control

PRE
egress
control

compute
CS control

deparser

v1model PRE: Packet bu�er and Replication Engine
CS: Checksum BQE: Bu�er �eueing Engine

parser control deparser PRE parser control deparser BQE

Ingress EgressPSA
parser port flex1 bridge flex2 router flex3 bu�er deparser

Ingress EgressPSA

Mellanox Spectrum
Figure 2: Architectures vary in their arrangement of dataplane pipelines.

to write truly modular programs. Even minor modifications to one
part of a program can induce changes in the rest of the program.
C2. Heterogeneous programming model. Different programmable
blocks in P4 are expressed in different sub-languages with incom-
patible abstract machines—e.g., while parsers are written in a sub-
language based on finite state machines (FSMs), control blocks are
written in a more standard imperative sub-language [7]. Due to this
heterogeneity, P4 lacks a uniform interface for packet-processing
modules; this prevents modules from being composed together to
build larger programs. For instance, returning to Fig. 1, we might
like to execute the parser, control, and deparser blocks of ipv4
module at 1○ just before applying forward_tbl in ether’s control
block so that nh is defined. However, this would require some-
how executing part of ether’s control block after ipv4’s deparser,
which would not be possible if the architecture exposed only a
single deparser or control block.
C3. P4 programs are architecture-specific.A P4 program is dependent
on the pipeline model of the architecture for which it is written.
As architectures differ vastly in the set of programmable blocks,
their arrangement in the pipeline, and the set of available externs
and metadata (see Fig. 2), it is difficult to port a program to another
architecture without a significant rewrite. For example, consider
porting a program from PSA to V1Model architecture. Mapping
the functionality implemented for PSA’s ingress deparser block to
any programmable block in V1Model’s pipeline requires rewriting
the program based on a semantic understanding of the blocks. In
addition, P4 programs usually rely on architecture-specific meta-
data and associated primitives such as packet recirculate, clone
etc. [8, 10], which further tightens the coupling with the architec-
ture and undermines portability.

To summarize, current P4 programs are (i) monolithic as head-
ers and metadata are generally shared across the entire program,
(ii) not composable because of heterogeneous models for differ-
ent processing blocks, and (iii) not portable because of their tight
coupling to target architectures.
Insights. Based on these observations, we identify the following
two insights that enable us to achieve the aforementioned goals.
I1. Homogenize abstract machines for flexibly composing and map-
ping modules to targets. Although primitives such as parsers and
MATs are expressed using different sub-languages of P4, we find
that fundamentally these primitives can be implemented by a com-
mon abstract machine based on MATs [17]. Homogenizing the
abstract machines for all processing enables (i) powerful forms

of composition by allowing unconstrained transfer of execution
control between modules and (ii) flexibly mapping processing logic
on to programmable blocks of a target.
I2. A general abstraction of dataplane architectures for target-agnostic
and modular programming. In addition to common domain-specific
primitives like MATs, the current P4 programming model relies on
target-specific operations using fixed-function blocks; this results
in P4 programs being architecture-specific (C1). By decoupling P4
programs from such target-specific constructs and using a general
dataplane abstraction, we can express packet-processing in a way
that is portable across architectures while supporting target-specific
functions—imagine a compiler which links an architecture-agnostic
program with architecture-specific libraries to build the dataplane.
Such an approach also enables writing and composing independent
modules while encapsulating implementation details.

Of course, introducing yet another architecture to unify existing
architectures would add significant complexity to the P4 ecosystem.
Instead, we identify a logical architecture that acts as high-level
description against which programs are written. This architecture is
logical in the sense that target devices do not explicitly implement
it. Rather, it is designed to capture the essence of packet processing
including: (i) simple linear pipelines that are expressive enough to
encode a wide range of packet-processing functions, (ii) common
interfaces for composing modules, and (iii) generic constructs for
creating non-linear pipelines based on packet cloning and replica-
tion. We propose a compiler that maps programs written against
this logical architecture to the architectures supported by P4 targets.
Summary. With µP4, users write programs in a variant of the P4
language that has been extended with new constructs to support
modularity and composition. Each µP4module processes a complete
or partial packet along with associated metadata and generates one
or more packets along with possibly modified metadata. µP4 mod-
ules communicate via a well-defined uniform interface—a logical
buffer. Further, to express special processing such as packet repli-
cation, µP4 provides generic logical externs. Hence, µP4 abstracts
away the details of target pipelines. The compiler (µP4C) maps
target-agnostic µP4 programs with logical externs to target-specific
realizations using a sequence of transformations. First, µP4C trans-
lates a program to a µP4-specific Intermediate Representation (IR).
It then homogenizes the abstract machine for each block by trans-
forming all programmable blocks into match-action units. This
enables natural transfer of execution control across modules as
well as code reuse and composition. Finally, µP4C partitions the IR
into a configuration specific to the target architecture and schedules
processing onto the available packet-processing blocks.

3 The µP4 Framework
“An abstraction is one thing that represents

several real things equally well.”
—Edsger W. Dijkstra

We now describe the key components of the µP4 framework. A µP4
dataplane is based on an abstract programming model in which
modules correspond to fine-grained functions that hide implemen-
tation detail and communicate along clearly-defined interfaces.
µP4 dataplane model. Each packet-processing module is a self-
contained execution unit and is structured according to the abstract

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

Input bu�er Output bu�er

µP4 program body

packet byte-stream, metadata, arguments

Figure 3: µP4’s abstract dataplane model.

model shown in Fig. 3. A µP4 program takes as input a packet byte-
stream, metadata and arguments for user-defined parameters and it
generates byte-streams, metadata, and return values corresponding
to one or more packets as output. Such a model encapsulates several
important implementation details—e.g., header types, local state,
user-defined metadata andMATs—of a µP4 program and hides them
from other µP4 programs. This notion of encapsulation is key to
enabling modular programming with µP4. Operationally, the model
fetches an element from a logical input buffer, executes the µP4
program, and writes one or more elements to the logical output
buffer, which typically acts as input for another µP4 program.1 Note
that these buffers exist only in the abstraction and do not repre-
sent buffers in actual targets. Encapsulation of packet-processing
functions in modules that communicate via logical buffers form the
basis of µP4’s abstract programming model.

µP4 Architecture (µPA). Next, we expose µP4’s dataplane model
through a logical architecture (µPA) which provides concrete inter-
faces to write µP4 programs (§4). For this, our approach is inspired
by the Click modular router [24]. In µPA, the packet-processing
pipeline is specified as a composition of logical µP4 programs. Hence,
each pipeline has one or more µP4 program bodies and exposes
an interface to specify run-time parameters in a generic way. To
abstract away from target-specific constructs, µPA provides logical
externs and metadata—they facilitate the use of features such as
packet replication which are not part of the core P4 language but
are supported by common architectures.

µP4 Compiler (µP4C). µP4 extends P4 by allowing users to write
libraries of independent packet-processing modules that are ex-
ecuted via a built-in apply method. Fig. 4 illustrates building a
dataplane with µP4 and µP4C in two stages: (i) compiling indi-
vidual target-agnostic modules and (ii) composing modules and
linking them with a target-specific backend to build an executable
dataplane. Users write individual modules for specific processing—
e.g., L2.µp4 in Fig. 4 performs only Ethernet processing similar to
that in Fig. 1. Fig. 4a shows the first stage where µP4C translates
a module into µPA-specific IR. Next, users link different modules
together to build a dataplane—e.g., in Fig. 4b, main.µp4 composes
Ethernet (L2) and IPv4 (L3) modules to build a modular router. In
during this, µP4C transforms the parser and deparser blocks of
each module into MATs. This transformation unifies the abstract
machines used for parsing and packet-processing, and allows seam-
less transfer of execution within and across modules, thus enabling
flexible composition. Further, based on the specified target device,
the compiler also generates the dataplane configuration specific to
the device through a sequence of intermediate steps (§5).

1Packets marked with drop are not inserted into the output buffer.

user-defined intermediate provided available output

L2.µp4 µP4C
L2 µP4 IR

L2 control API--arch=µPA

(a) Compiling a µP4 module into IR.

main.µp4

L2 µP4 IRL2 µP4 IR

L3 µP4 IRL3 µP4 IR

µP4C main.p4main.p4

P4C or target-compiler

target-specific exe control API

--arch=<real target>

(b) Compiling a composed µP4 program for a target.
Figure 4: Steps in compiling a µP4 program

4 µP4 Architecture (µPA)
This section presents µP4’s logical architecture (µPA) in terms of:
(i) µP4 pipelines and interfaces for writing µP4 programs (§4.1),
and (ii) logical externs for expressing special packet-processing
operations in a portable manner (§4.2).

4.1 µP4 Pipelines and Interfaces
A µP4 dataplane can be built out of two kinds of pipelines: linear and
orchestration (Fig. 5). A linear pipeline models processing an input
packet using a µP4 program in three distinct stages: parser, control,
and deparser. The pipeline may generate multiple outputs for each
input packet, but each packet is processed using the same logic.
In contrast, an orchestration pipeline allows different copies of a
packet to be processed in different ways—e.g., using conditionals
on metadata and invoking different programs. A combination of
these two kinds of pipelines enables expressing a wide range of
packet-processing behaviors.
Interfaces. Recall the earlier example of composing L2 and L3 mod-
ules (Fig. 1)—if we composed L2 and L3 sequentially, L3 would
have to parse the entire packet output by the L2 module. This in-
troduces a tight coupling between them as the L3 parser has to
parse the L2 header also in order to reach the L3 header. Ideally, we
want the L3 module to process only the part of the packet starting
at the L3 header. To enable this, µPA introduces three interfaces
that allow one module to invoke another: Unicast, Multicast and
Orchestration.

The Unicast and Multicast interfaces are implemented by lin-
ear pipelines, while Orchestration is implemented by orchestra-
tion pipelines. Essentially, these interfaces refine the notion of a
logical buffer (Fig. 5)—e.g., a linear pipeline that writes multiple
packets would use the Multicast interface to populate its out-
put buffer. The following snippet shows the signatures for these
interfaces while §A provides detailed declarations. Fig. 6 shows
declarations of types, such as pkt, used here and Fig. 8 illustrates
the usage of a Unicast interface.
Unicast <I,O,IO> (pkt p, im_t im, in I i_param ,

out O o_param , inout IO io_param);

Multicast <I,O> (pkt p, im_t im, in I i_param ,

out_buf <O> ob);

Orchestration <I,O> (in_buf <I> ib, out_buf <O> ob);

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

pa
rs

er

linear pipeline

de
pa

rs
er

orchestration pipeline

bu�er bu�er bu�er bu�er

Figure 5: Linear and orchestration µP4 pipelines.

To implement the model in Fig. 3, µP4 implicitly performs a few
operations while invoking µP4 programs—e.g., note that unlike
Orchestration, Unicast is not parameterized on any buffer. So,
the model fetches an element from an implicit logical input buffer
for the Unicast interface, while for the Orchestration interface,
it fetches the elements from a program-specified input buffer.

4.2 Logical Externs
µP4’s logical externs model packet-processing on headers and meta-
data in a target-agnostic manner. The µP4C compiler maps these
generic constructs to target-specific constructs, as shown in Fig. 6.
Packet extern. A packet is represented as a byte-array using the
pkt extern. Instances of pkt can be created using the copy_from
method and modified using the extractor and emitter externs.
Intrinsicmetadata and constraints.Target architectures usually
expose certain per-packet intrinsic metadata with some constraints
on their usage—e.g., PSA’s output_port cannot be updated in the
egress pipeline [10]. To use such metadata and capture their con-
straints, µPA provides (i) an extern, im_t and (ii) an enumerator,
meta_t (see Fig. 6). The extern im_t provides generic methods to ac-
cess metadata, while meta_tmaps µPA’s metadata to target-specific
metadata as defined in µP4C’s target-specific backend (§5). Each
value in the enumerator maps to an immutable intrinsic metadata
field for the target—e.g., ingress_timestamp. Note that meta_t
must be defined for each target in the µP4C backend. To access
values set by the target, im_t provides a method get_value.
Input and output buffers. Corresponding to the logical buffers
in the model (Fig. 3), µPA provides in_buf and out_buf externs.
These are used to invoke other modules from within the control
block of a µP4 pipeline. As the model restricts fetching multiple
packets simultaneously from an input buffer, in_buf’s dequeue
method is not exposed to the user. However, users can use the
buffers to pass arguments to modules. out_buf exposes enqueue
and merge methods to store packets processed by a callee. To move
elements to an in_buf instance, which is passed as the argument,
users can use to_in_buf. Unlike in_buf and out_buf, the mc_buf
extern allows storing replicated headers for multicast.
Multicast extern. For programs that need packet replication, µPA
provides the mc_engine extern. It can be instantiated within a
control block while implementing the Multicast interface. To
store copies of parsed headers, unparsed payloads, and metadata,
Multicast provides a buffer of type mc_buf as a parameter. Users
can create copies of a packet by invoking mc_engine’s applymethod.
Logically, this can be thought of as spawning multiple pipelines,
each processing a replicated packet. Within each pipeline, all state-
ments reachable from the method call are executed (see §B).
Example: Modular router.We demonstrate how we can compose
packet-processing modules to build a modular router using µP4’s

extern pkt { /* packet representation */

byte[] packet;

unsigned length;

void copy_from(pkt pa);

}

extern emitter { /* packet assembler */

void emit <H>(pkt p, in H hdr);

}

enum meta_t { /* enum mapping target metadata */

IN_TIMESTAMP , OUT_TIMESTAMP ,

IN_PORT , PKT_LEN , ...

}

extern mc_engine { /* multicast extern */

mc_engine ();

void set_mc_group(GroupId_t gid);

apply(im_t , out PktInstId_t);

set_buf(out_buf <O>);

apply(pkt , im_t , out O);

}

extern extractor { /* header extraction extern */

void extract <H>(pkt p, out H hdr);

void extract <H>(pkt p, out H hdr , in bit <32> size);

H lookahead <H>();

}

extern im_t { /* intrinsic metadata */

void set_out_port(in bit <8>);

bit <8> get_out_port ();

bit <32> get_value(in meta_t ft);

void copy_from(im_t im);

}

/* used only by the architecture */

extern in_buf <I> {

dequeue(pkt , im_t , out I);

}

extern out_buf <O> {

enqueue(pkt p, im_t im, in O out_args);

void to_in_buf(in_buf <O>);

void merge(out_buf <O>);

}

extern mc_buf <H, O> {

enqueue(pkt , in H, im_t , in O);

}

extern void recirculate <D>(in D data);

Figure 6: Type and extern declarations in µPA.

interfaces and externs. Fig. 8a shows l3.µp4, which implements
the Unicast interface and processes IPv4 and IPv6 headers. Both
ipv4 and ipv6 1 set a user-defined parameter, nh (next-hop), based
on an input packet p and intrinsic metadata im. Similarly, L3 ex-
poses a parameter, type 3 . Such user-defined parameters allow
flexible passing of data across modules for composition. In Fig. 8b,
ModularRouter parses the Ethernet header and invokes an instance
of L3 via l3_i.apply() 4 . It passes a partial packet p, without the
Ethernet header, to L3. L3, in turn, uses the type argument to in-
voke an instance of the appropriate protocol—IPv4 or IPv6—which
parses the L3 header, sets the value of nh, deparses, and returns
the execution control 2 . ModularRouter uses the value of nh to
continue L2 processing by applying forward_tbl table 5 .

5 µP4 Compiler (µP4C)
Now, we present the design of µP4C—a compiler that transforms
µP4 programs to target-specific P4 code.
1For brevity, we elide unused parameters in parsers, controls, and declarations.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

µP4
source

fr
on

te
nd

pa
ss linking

static
analysis

transformation
to match-

action control

preprocessing
for backend

target-specific translation
& control-block allocation

parser/deparser
synthesis

target
architecture-
specific code
(arch-IR)

midend pass backend passlibrary modules (µP4-IR)

µ
P4

-I
R

Figure 7: Overview of transformations performed in different passes in µP4C: frontend, midend, and backend.

ipv4(pkt p, im_t im, out bit <16> nh);

ipv6(pkt p, im_t im, out bit <16> nh); 1
// implement unicast interface for L3 program

program L3 : implements Unicast<> {

parser P(extractor ex, pkt p, out empty_ht h,

inout data_t d) {

state start { transition accept; } }

control C(pkt p, inout empty_ht h, im_t im,

out bit <16> nh , inout bit <16> type) {

ipv4() ipv4_i ; // instantiation

ipv6() ipv6_i ;

apply { switch (type) { // out arg: nh 2

0x0800: ipv4_i .apply(p, im, nh);

0x86DD: ipv6_i .apply(p, im, nh); } } }

control D(emitter em, pkt p, in empty_ht h) {

apply { } }

}

(a) L3 µP4 program implements IPv4 and IPv6 processing.

L3 (pkt p, im_t im, out bit <16> nh ,

inout bit <16> type); 3

program ModularRouter : implements Unicast<> {

parser P(extractor ex, pkt p, out hdr_t h) {

state start {

ex.extract(p, h.eth);

transition accept; }

}

control C(pkt p, inout hdr_t h, im_t im) {

// p is partial pkt without L2 header

bit <16> nh;

L3() l3_i;

action drop () {}

action forward(bit <48> dmac , bit <48> smac ,

bit <8> port) {

h.eth.dstMac = dmac;

h.eth.srcMac = smac;

im.set_out_port(port); // setting metadata

}

table forward_tbl { // L2 forwarding , needs nh

key = { nh : exact; }

actions = { forward; drop; } }

apply { // invoke L3 to get nh

l3_i .apply(p, im, nh , h.eth.etherType); 4
forward_tbl.apply(); // use nh in forward_tbl 5

} }

control D(emitter em, pkt p, in hdr_t h) {

apply { em.emit(p, h.eth); } }

}

ModularRouter(P, C, D) main;

(b)ModularRouter implements L2 processing and invokes L3 µP4 program.

Figure 8: Composing L2 and L3 processing to build a modular router.

5.1 Design Overview
µP4C builds on the P4 reference compiler, p4c [9], and has amodular
design consisting of three passes: frontend, midend and backend.
Fig. 7 shows an overview of these passes.
Frontend. The frontend transforms a µP4 programs into an inter-
mediate representation (µP4-IR). It performs basic checks at the
source level and serializes the µP4-IR to JSON.
Midend. The midend pass is target-agnostic and focuses on com-
position and preprocessing for the backend pass. It performs four
main transformations: (i) linking µP4-IR for modules, (ii) static
analysis (§5.2), (iii) homogenizing parser and control blocks to en-
able composition (§5.3), and (iv) preprocessing any packet copying
constructs—e.g., copy_from—for the backend pass (§5.4). After this
pass, the composed µP4-IR contains only control blocks with µPA-
specific constructs.

The midend pass begins by linking the µP4-IRs of all the µP4 pro-
grams that need to be composed. It then performs a static analysis
of the µP4 programs to compute its “operational-region”—i.e., the
region of a packet’s byte-stream that the program needs to access—
and synthesizes a stack of one-byte headers, called a byte-stack,
large enough to store the operational-region. Next, considering this
byte-stack as a packet, it transforms all the parsers and deparsers
into MAT control blocks, thus homogenizing the processing blocks.
This step simplifies the µP4-IRs of µP4 programs and composes
them. Naturally, the µP4-IR of the “main” µP4 program—i.e., the
one composing together other µP4 programs—is also transformed
to a MAT control block that invokes others. Optionally, in the case
of packet replication, µP4C’s midend preprocesses copy_from of
pkt. It extracts packet-processing code for every pkt instance and
prepares a processing schedule for the backend.
Backend. This pass is specific to a target architecture and has two
goals: (i) to allocate control blocks on to the target’s dataplane
pipeline while respecting any constraints on metadata (§5.5) and
(ii) to synthesize required target-specific parser and deparser blocks
needed to parse and deparse packets into µP4-specific byte-stack.

5.2 Static Analysis
µP4C performs static analysis to compute the operational-region,
which is quantified by: (i) extract-length: the maximum number
of bytes that need to be extracted from a packet to execute the
composed µP4 program, (ii) size of the byte-stack needed to store
new header instances that may be added during processing, and
(iii) min-packet-size, the minimum size of packets that may be ac-
cepted. µP4C computes these values recursively for each µP4 pro-
gram involved in composition as the programming model allows
nested invocations of µP4 programs.

To compute these values for a µP4 program,ψ , we first analyze
the parse graph of its parser and compute the extract-length for the
parser, Elp(ψ), as the maximum number of bytes extracted by the

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

callee1.apply() callee2.apply()

Parser Control Deparser Parser
eth(14)

mpls(4)

ipv6(40)

mpls.setInvalid()

ipv4.setValid()

eth(14)

mpls(4)

ipv6(40)

ipv4(20)

eth(14)

ipv4(20)

ipv6(40)
ipv4(20)

Caller’s control path

Figure 9: Static analysis: multiple callees in a control path.

parser to reach the accept state.ψ ’s extract-length also depends on
its callees. So, for a control block, c, we define the extract-length,
Elc(ψ), as the maximum number of bytes extracted during execution
of any of its control paths. In a control path, multiple callees may
be invoked. We define the extract-length, lcψ (x), of a control path x
as the maximum number of bytes required to process all the callees
in x. The µP4 program’s extract-length, El(ψ), is the sum of extract-
lengths of its parser (Elp(ψ)) and control blocks (Elc(ψ)). Note that
the size of the byte-stack needed for a µP4 program may differ from
its extract-length as a packet’s size may change during processing.

To estimate the maximum decrease in packet size in a control
path, we consider all the header instances which are set to valid or
invalid in the control path. The rationale for this is that if a packet
already has a header instance, setting it to invalid will decrease the
packet size, but setting it to valid will not. Similarly, for maximum
increase, we consider an input packet that does not contain any
header instance that is set to valid or invalid in the path. Then, we
perform static analysis of the control block by evaluating all the
setValid and setInvalid invocations. We denote increase and
decrease in packet size on a control path x with iψ (x) and dψ (x),
respectively. Similarly, ∆(ψ) and δ (ψ) denote increase and decrease
for the entire µP4 program. Eq. (1) expresses iψ (x) as the sum of
(i) sizes of all the header instances on which setValid is done and
(ii) maximum increase in packet size by every callee µP4 program
in the path. We compute dψ (x) in a similar way as show in Eq. (2).

iψ (x) =
∑

H.setValid∈x

sizeof (H) +
∑

callee.apply()∈x
∆(callee) (1)

dψ (x) =
∑

H.setInValid∈x

sizeof (H) +
∑

callee.apply()∈x
δ (callee) (2)

Header instances that are not emitted by the deparser but are ex-
tracted by the parser also decrease a packet’s size. So, we add the
size of such header instances to dψ (x) for every path x. Forψ , we
compute the maximum increase ∆(ψ) = maxx

{
iψ (x)

}
and decrease

δ (ψ) = maxx
{
dψ (x)

}
.

Now, we estimate the extract-length, lcψ (x), for a path x inψ ’s
control block as a function of the extract-length, El(callee), and
maximum decrease in packet size, δ (callee), of callees. Assume
that a control path x invokes N callees, as shown in Fig. 9. The ith
callee may decrease a packet’s size—e.g., a control path of callee1
removes the mpls header, decreasing the size by 4 bytes. callee2
may extract eth, ipv6 and ipv4 headers from the packet. So, to
process (i) removal of 4-byte mpls header by callee1 and (ii) ex-
traction of maximum bytes (74-byte eth-ipv6-ipv4) in callee2’s
parser, 4+74=78 bytes are required.We take into account the extract-
length of every callee’s parser along with the maximum decrease

in packet size by the callee’s predecessors in the control path x to
compute lcψ (x), as shown in Eq. (3).

lcψ (x) = max
cp

{(i<cp∑
i=0

δ (i)
)
+ El(cp)

}
, cp ∈ [0,N) (3)

Bsψ = El(ψ) + ∆(ψ) (4)

Finally, we compute the byte-stack size forψ , Bsψ , as the sum of
its extract-length and maximum increase in packet size as shown
in Eq. (4). For the example in Fig. 9, the byte-stack size for the caller
is 98 (El(caller) = 78, and ∆(caller) = 20 for increase in callee1)
bytes. We perform a similar analysis for min-packet-size but elide
the details for brevity.

Scalability. Although µP4C performs static analysis of the parse
graph and control flow graph by exploring the different paths, it
does not face the usual scalability issues with symbolic execution
of dataplane programs [34]. This is because µP4C’s static analysis
of a parse graph to compute the operational region can be reduced
to finding the longest path in a directed acyclic graph, which can
be done in linear time. For the control flow graph, general symbolic
execution does not scale as each table entry introduces a potential
branch. This is not the case with µP4C as the static analysis does not
depend on the table entries. Instead, µP4C needs to consider only
the branches in the structure of program—e.g., due to conditionals
and number of actions per MAT. Therefore, µP4C’s static analysis
scales well to large programs in practice.

5.3 Homogenizing Programmable Blocks
To compose µP4 programs, it is crucial to homogenize the abstract
machines of the processing blocks. This enables transfer of execu-
tion control between modules—such as that needed for a modular
router—which existing systems do not support [18, 38].

Parser. A close look at the design of programmable parsers re-
veals that they essentially perform repeated match-action oper-
ations [17]. So, with the operational-region in byte-stack, we can
perform these operations simultaneously in hardware. We use the
parser in Fig. 10a as a running example to explain how we synthe-
size MATs for a parser.

The parser’s FSM has four states to extract Ethernet, IPv4, IPv6
and TCP headers of size 14, 20, 40 and 20 bytes, respectively. µP4C
performs static analysis of the parser to identify two possible paths
from the start state to the accept state. Then, it replaces the header
fields in each path—e.g., eth.ethType and ipv6.nexthdr—with
their evaluated offsets in the byte-stack (b)—e.g., b[12]++b[13]
and b[20]—as shown in Fig. 10b. It also performs Forward Substitu-
tion [28] on every path to eliminate any anti-dependency between
two states—e.g., var_y is replaced with meta.data1 in one and
meta.data2 in the other.
µP4C creates a match-action entry for each path as follows. Us-

ing the byte-stack offsets and variables used in select expressions
of states in each path (Fig. 10b), µP4C synthesizes a match-key by
merging them (Fig. 10c). To ensure that a packet is long enough
to be parsed, the key also encodes a validity test for the last byte

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

extract(eth)
select(eth.ethType)

size = 14B

extract(ipv6)
var_y = meta.data1
select(ipv6.nexthdr)

40B extract(ipv4)
var_y = meta.data2
select(ipv4.protocol)

20B

extract(tcp)
select(var_y)

Accept
20B

0x86DD 0x0800

0x6 0x6

0xFF

(a) An example P4 parser

extract(eth)
select(b[12]++b[13])

extract(ipv4)
select(b[23])

extract(tcp)
select(meta.data2)

Accept
54B

0x0800

0x6

0xFF

extract(eth)
select(b[12]++b[13])

extract(ipv6)
select(b[20])

extract(tcp)
select(meta.data1)

Accept
74B

0x86DD

0x6

0xFF

(b) Static analysis of the parser

key = { b[12]++b[13]:exact; // rest Ternary

b[20]; b[23]; meta.data1; meta.data2;

b[53]. isValid (); b[73]. isValid ();}

actions = { cp_eth_ipv4_tcp;

cp_eth_ipv6_tcp; set_parser_error ;}

const entries = {

(x0800,_,x6,_,xFF,1,_):cp_eth_ipv4_tcp ();

(x86DD,x6,_,xFF,_,_,1):cp_eth_ipv6_tcp ();

}

default_action : set_parser_error ();
(c) Parser converted to match-action control

Figure 10: Example illustrating transformation of a parser to a MAT control block by µP4C.

extracted on the path. Then, it synthesizes an action for each path—
e.g., cp_eth_ipv6_tcp—which has assignment statements to in-
stantiate the relevant header fields. µP4C pairs a key with the ap-
propriate action to create an entry for the path—e.g., in the first
entry in Fig. 10c, x0800, x6 & xFF are matched to the first, third and
fifth keys to parse a byte-stack as Ethernet, IPv4 and TCP headers
while the second and fourth keys are ignored.

Deparser. Using the emit order of header instances and the number
of bytes extracted by the parser, µP4C synthesizes MAT entries to
copy back user-defined headers at appropriate offsets in the byte-
stack. A µP4 program may set a header instance (in)valid, thereby
modifying a packet’s size. In case of an increase, the byte-stack is
large enough to hold new headers, while in case of a decrease, data
is shifted—e.g., for callee1 in Fig. 9, if mpls header is removed,
the following 60 bytes are moved up by an offset of 4 in the stack.

After this transformation, the entire program is ready to be
allocated on the programmable match-action units of a target. This
is helpful in flexibly composing µP4 programs as the composed
program can again be mapped to the same unit.

5.4 Preprocessing for µP4C backend
µPA’s logical externs allow expressing non-linear processing such
as packet replication. We outline our compilation approach that
makes these logical externs amenable to be mapped to targets. If a
program uses copy_from method to duplicate a packet, µP4C pre-
pares a Packet-Processing Schedule (PPS) graph for the µP4 program.
A node in a PPS graph denotes the µP4 program’s sub-program,
called thread, that processes a single packet instance, while an
edge represents dependency among threads. To prepare a PPS by ex-
tracting sub-programs, we construct a Program Dependence Graph
(PDG) [14] from the µP4 program’s IR and perform slicing that is de-
fined based on a variant of program slice [36]. We define our slicing
criteria based on the semantics of logical externs, pkt, in_buf and
out_buf, along with apply method exposed by µPA’s interfaces.
See §C for more details.

5.5 Mapping to the Target Pipeline
µP4C’s backend generates target-specific P4 source based on se-
mantic understanding of the target’s pipeline model. It requires a
mapping from µPA metadata and externs to target-specific ones
and any constraints on target’s metadata. The backend performs a
straightforward translation of µPA’s extern method calls with the

corresponding externs in the target architecture. It allocates the
control blocks in µP4-IR to the programmable blocks exposed by a
target while respecting any constraints on placement.
µP4C performs a partitioning transformation to allocate packet-

processing blocks of a single thread on programmable control blocks
of target pipeline. In case of packet replication, this transformation
can be performed on every thread. Next, we explain the partition-
ing for single thread while using V1Model as a reference target
architecture.
µP4C’s backend for V1Model maintains a FSM with two states—

ingress and egress. The FSM captures constraints on the usage of
egress_spec, egress_port and queuing metadata in the ingress
and egress blocks. Each state represents a set of assertions to be ver-
ified on visiting each program statement in the Control Flow Graph
(CFG) of the thread—e.g., to prevent accessing dequeue timestamp
of a packet in ingress pipeline, the graph traversal asserts that every
visited statement is NOT a im_t’s get_valuemethod call whose ar-
gument maps to V1Model’s intrinsic metadata for deq_timestamp.
If an assertion associated with a state fails, the program statement
is marked and not visited. State transition occurs when graph tra-
versal cannot continue due to absence of unmarked and unvisited
nodes. At this point, µP4C creates two sub-graphs of the thread
CFG—one having visited and the other having unvisited program
statements. The FSM also transits to egress state. Similarly, in the
egress state, the graph can enforce egress-specific constraints.

For handling data dependency—e.g., sharing live local variables—
µP4C synthesizes partition-metadata that can be passed as user-
metadata between ingress and egress control blocks. Nodes across
sub-graphs may be connected by edges to represent control depen-
dencies among sub-graphs. µP4C converts control dependencies
into data dependencies by synthesizing appropriate metadata.

6 Implementation
Our prototype compiler, µP4C, implements a core subset of µP4 by
extending the P4 reference compiler [9]. Specifically, the prototype
supports all the µP4 constructs with the exception of multicast
and orchestration interfaces. It includes backends to compile µP4
programs for two target architectures: (i) Barefoot’s Tofino Na-
tive Architecture (TNA) [27] and (ii) V1Model [11]. In addition
to the frontend extensions for µP4’s syntax, µP4C’s midend and
backend comprise ~13,500 LoC. Using this prototype, we have im-
plemented several features of a datacenter switch [6] in µP4 and
built dataplanes by composing different subsets of the features. The

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

backends allow us to evaluate the portability across targets and
resource overheads on a hardware target for µP4. We have released
our µP4C implementation along with the example programs under
an open-source license [32].

In the rest of this section, we discuss: (i) differences with P4 (§6.1),
(ii) supporting new target architectures (§6.2), (iii) experience with
building a backend for Tofino (§6.3), and (iv) limitations and avenues
for further improvement (§6.4).

6.1 Comparison with P4
One of our goals is to keep the changes to P416 syntax and grammar
minimal to ease the adoption of µP4. We briefly describe some of
the main differences. First, µP4 allows defining custom package
types which hide the implementation and expose an interface to
reuse code. Second, µPA defines interfaces to encapsulate a set of
programmable blocks so that the logical dataplane pipeline can be
extended. Third, µP4 requires explicit data passing between mod-
ules in contrast to implicit globally shared metadata in P4. Finally,
instead of target-specific constructs, programmers use logical µPA
constructs. To represent packets and to extract and emit headers,
µPA defines a different set of externs compared to those defined
in the P4 core library. Apart from these, µP4 conforms to P416’s
constructs such as parsers, controls, externs, etc.

6.2 Supporting New Target Architectures
The only target-specific component of µP4C is the backend (§5.5),
which translates µP4-IR into a P4 program for the specified target.
As the backend maps µPA’s generic metadata to metadata specific
to the target architecture, it requires architecture-specific map-
pings for metadata and methods corresponding to meta_t, im_t
and mc_engine. The generated program needs to conform to the
target’s pipeline model and so, the backend has to take care of
any constraints on target metadata and externs. Further, if the mi-
dend of the target’s compiler is available, µP4C’s backend can pass
the IR to the target compiler’s midend to generate the executable
for the target. Thus, to support a new target, we need to provide
µP4C’s backend with a mapping from µPA’s logical constructs to
target-specific constructs.

6.3 µP4C’s TNA Backend for Tofino
ASIC designers often make design choices that are driven towards
optimizing processing rate, power, chip area and cost. Such choices
manifest as constraints while allocating the finite resources avail-
able on the chip to support reconfigurability [23]. We need to under-
stand these choices and constraints to build efficient backends. We
briefly discuss our experience in developing a backend for Tofino.

Tofino is based on RMT [4] which consists of a pipeline of match-
action units assembled in multiple stages. Packet header data and
other metadata is carried along these stages by packing them in
multiple fixed-size containers, which form the Packet Header Vector
(PHV). Tofino supports containers of sizes 8, 16 and 32-bits [29].
Moreover, only a small subset of these containers is accessible
from the action ALUs in each stage. These add to a complex set
of constraints which must be satisfied while optimizing resource
allocation. Indeed, these constraints might be infeasible in some
cases—e.g., for a program with a long dependency chain of MATs.

While resource allocation is the task of the target’s compiler,
bf-p4c in this case [1, 9], µP4C’s backend must generate TNA P4
programs for which bf-p4c can satisfy the resource constraints. So,
we aim to generate code that is amenable to bf-p4c’s heuristics for
constrained resource optimization. The generated code uses (i) a
byte-stack and (ii) assignments to/from elements in the byte-stack,
involving bit-slicing and concatenation to convert (de)parsers into
MATs. µP4C must allocate the byte-stack on PHVs in such a way
that assignments can be scheduled on action units without exceed-
ing the maximum number of PHV containers accessible to each
action ALU. To address this, µP4C backend needs to be aware of the
size and number of PHV containers and associated constraints so
that it can (i) optimize container utilization by aligning field sizes
with container sizes, avoiding fragmentation of fields and making
resource allocation tractable and (ii) break down complex assign-
ment operations which need more PHV containers than available
per action ALU into simpler operations. The latter allows the de-
parser to write data back from user-defined fields to the byte-stack
while efficiently using PHVs per action ALU.

We leveraged these observations and insights by integrating
another pass in µP4C’s backend for TNA. This pass adjusts the size
of elements in byte-stack and restructures operations to simplify
resource allocation for bf-p4c. As a result, we were able to com-
pile various programs for Tofino, which were earlier rejected by
bf-p4c. This demonstrates the feasibility of using µP4C to support
commodity hardware targets.

6.4 Limitations
While µP4 enables portable, modular and composable dataplane
programming, we discuss the limitations of our prototype along
with some insights to handle these limitations.
Stateful packet processing. Certain applications require stateful
processing of packets, and architectures provide various constructs
to persist such state—e.g., registers in PSA. Note that state in P4
is fundamentally similar to the notion of a static variable. While
our prototype does not implement it, µP4 can be extended to sup-
port static variables which µP4C can map to architecture-specific
constructs such as registers.
Traffic manager. Similar to P4, providing QoS guarantees by con-
trolling the traffic manager or changing the scheduling algorithm is
beyond the scope of µP4. It can still be used to emulate scheduling
algorithms with programmable schedulers such as PIFO [31].
CPU-dataplane interface. The prototype lacks an interface for
communication between the dataplane and the CPU. To support
this, we can use target-specific constructs such as digest and
packet_in for PSA, or extend µPA’s logical externs.
Packet replication. While µP4 and our design or µP4C support
packet replication using multicast and orchestration interfaces, our
current prototype of µP4C does not fully implement it yet.
Device capabilities. Devices support MATs with a fixed set of
match kinds such as exact, LPM, ternary, and range. µP4 requires
a target to support all match kinds used in a program; µP4C does
not transform across different match kinds as it requires translat-
ing entries at runtime—e.g., translating a range match entry for a
target that supports only exact match requires enumerating the

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

range at runtime, while our focus is on compile-time abstractions.
Similarly, µP4 cannot automatically synthesize implementations for
new checksum computations, action selector, and action profiles.

Recursion. Our implementation does not support recursion—e.g.,
consider a use case with VLAN-IP-GRE-VLAN headers by compos-
ing VLAN, IP and GRE µP4 program modules. Trivially inlining the
modules in such a call-chain would cause the compiler to fail. While
possible, our current implementation does not check for potential
cyclic dependencies among µP4 modules to reject such programs.

7 Evaluation
Our evaluation focuses on two key questions: (i) does µP4 enable
dataplane programming in a modular, composable and portable
manner (§7.1–§7.2), and (ii) can µP4 programs be run on commodity
programmable switches (§7.3)?We answer both these questions pos-
itively by implementing a library of widely-used packet-processing
functions as independent µP4modules and composing them to build
new dataplane programs. Table 1 shows a subset of these programs
which we refer to throughout this section. Each row corresponds
to a µP4 module, and each column corresponds to a composed pro-
gram (P1–P7) generated by combining the modules of checked
rows. The composed programs can perform a variety of functions
including Ethernet switching, IPv4 and IPv6 routing, MPLS-based
edge routing (encap/decap), Network Address Translation (NAT),
IPv6 Network Prefix Translation (NPTv6), Firewall/ACL, and Seg-
ment Routing (SRv4 and SRv6). We also implemented the equivalent
monolithic programs in P4 for comparison. We verify portability
of µP4 programs by reusing the same modules and compiling the
composed programs for two architectures: V1Model and TNA.

7.1 Composing Packet-Processing Layers
Packets are usually structured as layers of protocol headers with
standard layouts, where each layer is specialized for a specific role.
So, implementing modules for processing one or more layers is a
natural way to build applications as these modules can be developed
incrementally, composed together, and reused.

Layered modularity. By specializing the generic interfaces pro-
vided by µPA, users can write and compose µP4 modules–each
processing one network layer. To illustrate, we built a modular
router (P4) by composing independent modules for processing L2
(Ethernet) and L3 (IPv4 and IPv6) headers in §4 (Fig. 8).

Incremental development. Suppose we need to add support for
IPv6 Segment Routing (SRv6) to our modular router. For this, one
can independently develop another module (srv6) to process an
SRv6 header [20]. Then, we can incrementally extend L3 (Fig. 8a)
to support SRv6 without touching any other module:

srv6() srv6_i; // instantiation

apply { switch (type) {

0x0800 : ipv4_i.apply(p, im, nh);

0x86DD : { srv6_i.apply(p, im, nh); // copy next segment 's

address from SRH's list to IPv6's destAddr field

ipv6_i.apply(p, im, nh); }

} }

Programs P1 P2 P3 P4 P5 P6 P7
ACL ✓
Eth ✓ ✓ ✓ ✓ ✓ ✓ ✓
IPv4 ✓ ✓ ✓ ✓ ✓ ✓
IPv6 ✓ ✓ ✓ ✓ ✓ ✓
MPLS ✓
NAT ✓
NPTv6 ✓
SRv4 ✓

µ
P4

m
od

ul
es

SRv6 ✓

Table 1: Composing µP4 modules to build dataplane programs.

7.2 Composing Network Functions (NFs)
NFs such as firewall and NAT access headers across protocol layers.
Operators often need to deploy such NFs on devices using various
combinations as per some policy. To enable this, prior work on
dataplane composition (P4Visor [38] and P4Bricks [33]) and virtu-
alization (HyPer4 [18] and HyperV [37]) define operators based on
certain use cases. µP4 naturally supports such kinds of composition
using a combination of µP4-specific features such as user-defined
package types and native P4 constructs such as conditionals.
Realizing composition operators. The following µP4 code im-
plements sequential and override operators from CoVisor [22].
// Sequential: Firewall -> Routing

firewall.apply(p, im, result);

if (result.drop == false) {

modular_router.apply(p, im, tc); // tc, out args

// Override: routing decision

mpls_ler.apply(p, im, tc); // label based on tc

}

Here, a packet is first processed by firewall, which may decide to
drop it after analyzing one or more headers; otherwise, the packet
is routed. While routing, based on the packet’s traffic class (tc),
mpls_lermay override the routing decisionmade by modular_router.

A-B Testing is another composition operator, defined in P4Visor,
that µP4 can implement as follows:
/* A-B Testing in core devices */

// parser extracts 1 byte header with flag

extractor.extract(p, testHdr);

// Inside control block , the `p` w/o testHdr

if (h.testHdr.Flag == 1) test_prog.apply(p, im);

else prod_prog.apply(p, im);

// deparser puts back the test header

emitter.emit(p, testHdr);

7.3 µP4 on Commodity Hardware
Despite the hardware constraints mentioned in §6.3, µP4C can
be used to compile µP4 programs for commodity programmable
switches such as Barefoot’s Tofino. To benchmark µP4’s overheads,
we measure the hardware resource utilization on Tofino for µP4
programs and compare with their monolithic versions. Overall, we
find that µP4 programs require more resources, and we discuss
sources of these overheads.
Resource allocation. We found interesting cases where mono-
lithic P4 programs failed to meet the resource constraints for Tofino
while µP4 programs met (and vice versa). For example, compiling

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Program
% resource overhead w.r.t. monolithic
PHV Container Used Bits allocated8b 16b 32b

P1 80.00 312.50 -85.00 32.34
P2 0.00 315.79 -84.21 0.00
P3 272.73 564.71 -85.71 54.58
P4 9.09 331.25 -85.00 1.64
P5 -20.00 226.67 -63.64 47.10
P6 18.18 290.48 -80.00 48.52
P7 NA: Monolithic failed to compile

Table 2: Resource overhead of running µP4 programs relative to
their monolithic versions in terms of PHV utilization on Tofino.
usage(µP4)–usage(monolithic)

usage(monolithic) × 100%

µP4C-generated P4 code for P2 using bf-p4c failed initially be-
cause an assignment operation in the generated code was trying to
access more than the number of containers accessible to an action
ALU (§6.3). However, such issues are not fundamental inhibitors as
we can modify the generated programs to meet known hardware
constraints. In this case, it involved breaking down the complex
assignment into multiple simpler ones which are executed in a
series of MATs. P2 compiled for Tofino after this transformation.
For the same problem, somewhat counter-intuitively, we found
that increasing the size of MPLS header fields also solved the is-
sue without the previous transformation. This is because the new
field sizes aligned well with the container sizes on Tofino, reducing
fragmentation of fields into containers; this decreased the number
of containers needed for the assignment operation to within that
available per action ALU. We also found cases where µP4 programs
could compile but their monolithic P4 version did not—e.g., bf-p4c
failed to allocate resources for the monolithic version of P7.

Resource allocation is a complex problem that affects both mod-
ular and monolithic programs. Of course, in practice, a program
that fits is more useful than one for which the compiler can not
satisfy hardware constraints.

Resource utilization. To understand the cost of composition, Ta-
ble 2 shows the hardware resource utilization on Tofino for µP4 pro-
grams relative to their monolithic version in terms of (i) the number
of containers used for each container size, and (ii) the total number
of PHV bits allocated. Our main observation is that in each case, the
resources required to run µP4 programs were within Tofino’s limits.
In terms of container utilization, µP4 programs heavily utilize 16b
containers—almost 3× of their monolithic counterparts. This is ex-
pected as our TNA backend updated the field sizes to align with 16b
containers. While we cannot completely control the allocation of
different size containers, we find that the total number of PHV bits
allocated for µP4 is within 1.5× of monolithic—in some cases, the
same as monolithic. Further, note that the usage of 32b containers
with µP4 is negligible (1/6×) as compared to the monolithic ones.
We believe that with further optimizations, we can reduce such
overheads significantly by allocating the containers uniformly.

The number of hardware stages required for µP4 programs is
also higher than those for monolithic programs, as shown in Table 3.
This is because µP4 transforms (de)parsers into MATs to enable

P1 P2 P3 P4 P5 P6 P7

#stages P4 monolithic 3 4 3 3 3 3 NA
µP4 composed 5 9 8 5 5 8 7

Table 3: Number of stages utilized on Tofino.

flexible composition (§5.1). But, in each case, we were able to suc-
cessfully fit µP4 programs on Tofino. Note that as µP4 programs do
not require specialized hardware for (de)parsers, it has potential
gains which we could not benchmark.

8 Discussion and Future Work
We believe µP4 is an important first step toward making modular
data plane programming a reality. This section discusses some ideas
for making it practical (§8.1) and for future work (§8.2).

8.1 Overheads and Optimizations
The main source of resource overheads with µP4 is µP4C’s transfor-
mation of (de)parsers into MATs as it affects the resource allocation
heuristics of the target compiler (bf-p4c) in several ways. First,
these MATs may introduce new dependencies between parsed head-
ers, subsequent MATs and byte-stack in the composed CFG. De-
pending on the heuristics, the compiler may map the transformed
(de)parser and associated MATs on to dedicated MAU stages in the
hardware pipeline. Second, programs composed as a linear sequence
may perform unnecessary deparsing and parsing of the same head-
ers in MAU stages—e.g., imagine the deparser of one program being
simply the “inverse” of the parser of the subsequent program. Fi-
nally, the heuristics may fail to satisfy certain constraints, such
as those in §6.3, if the composed program does not meet certain
implicit assumptions of the target.

We outline several possible optimizations to alleviate these over-
heads. First, instead of generating a single MAT for a (de)parser,
µP4C can generate multiple MATs to split (de)parsing. While this
may seem counter-intuitive, it enables the target compiler to per-
form fine-grained optimization and placement—e.g., by resolving
dependencies and co-locating non-conflicting processing blocks
in the same stage. Second, for sequential composition, µP4C can
analyze the deparser and parser of consecutive programs for partial
equivalence. This allows compressing or even eliminating unneces-
sary deparsing and parsing within a composed µP4 program. Finally,
we can leverage the fact that dataplane programs usually imple-
ment standard networking protocols; using such domain-specific
knowledge, µP4C can reconstruct a single global parser by merg-
ing and concatenating all the parsers [33, 38]. This global parser
can be executed in the programmable parser unit on the hardware
while any metadata in callee µP4 programs can still be initialized
by synthesizing MATs. It also reduces the instances of complex
assignment operations which are likely to run into hardware con-
straints explained earlier (§6.3). With this, we expect the number
of hardware stages needed for µP4 programs to match those for
monolithic programs. However, reconstructing a global parser may
be difficult in certain cases—e.g., when a µP4 program invokes dif-
ferent µP4 programs based on information provided by the control
plane at runtime. Note that performing similar processing with P4
today would require resubmitting the packet, resulting in reduced

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

performance. In contrast, a µP4 program may trade-off resources
for better performance by avoiding the need for resubmitting.

In this work, our experience with hardware targets is limited to
RMT-based Tofino. We have not investigated resource overheads
with other RMT-based hardware targets or with different pipeline
architectures such as dRMT [5]. Different targets may have a dif-
ferent set of hardware constraints, and the overheads with µP4 as
compared to P4 may vary.

8.2 Future Directions
We discuss some directions to address the limitations of µP4 and
also outline interesting research directions to explore further.
Abstractions for stateful processing. To expose stateful abstrac-
tions for the dataplane, µP4 can be extended to include static vari-
ables and, more broadly, the notion of storage classes and lifetime.
This provides a general abstraction for architecture-specific stateful
constructs such as registers, counters and meters.
Target-agnostic composition. µP4 does not enable easy reuse of
P4 programs already tied to a target architecture. However, it would
be feasible to translate target-specific P4 programs to µP4 modules,
reuse and compose them with other µP4 modules and, finally, re-
target the composed µP4 program for another architecture.
Equivalence and verification. µP4 opens up avenues for cross-
architecture transformation of dataplane programs. This introduces
new challenges in terms of verifying the correctness of transforma-
tions and proving the equivalence of the dataplanes generated for
different targets.
Control and management interface. µP4 enables building dat-
aplanes in a modular way. To fully leverage the benefits, control
plane APIs should also be designed to allow multiple controllers
to configure subsets of dataplane modules on a device in a coordi-
nated way. Further, µP4’s architecture can be extended to provide
abstractions for managing the switch CPU-dataplane interface and
programming the traffic manager.
Debugging. While we do not focus on debugging in this work,
we believe it is an important direction that µP4 can facilitate—
e.g., programs can be linked against µP4 debug modules by using
the common interface. It would be interesting to explore different
design choices for the debugger’s interface, logging information in
the dataplane, and switch CPU-dataplane interfaces.

9 Related Work
In recent years, there has been a significant effort towards mak-
ing network programming composable as networks are complex
to manage and configure without having a modular approach.
These have ranged from composing policies and controllers to
dataplanes [2, 12, 15, 18, 22, 25, 26, 35, 37, 38].

Recent work on composing control planes and network poli-
cies [2, 26] focuses on defining a set of composition operators that
can be used to describe complex policies from smaller policies in a
consistent manner. This approach suits control programs as each
program specifies the complete behavior of a network or device.
Inspired by these efforts, recent work [18, 37, 38] has tried to define
composition operators for dataplane programs based on specific
use cases. µP4 fundamentally differs from these as it enables flexible
passing of control flow and data between dataplane programs. This

allows programmers to reuse fine-grained packet-processing code
and define custom forms of composition. Recent work also moti-
vates the need for similar composition by positioning multitenancy
of programmable network devices as a primary requirement [35].
Concurrent work on Lyra [16] shares similar goals as µP4, but takes
a different approach by defining a one-big-pipeline abstraction that
allows users to express their intent.

PSA [10] attempts to achieve a form of portability by defining a
standard architecture that many targets can realize. µP4 is orthogo-
nal to PSA as it focuses on defining an abstraction that programmers
can use to write dataplane programs that is portable across sev-
eral target architectures, including PSA. µP4 is closer in spirit to
Domino [30], which provides abstractions for expressing stateful
algorithms and a compiler that generates low-level microcode.

At a conceptual level, the design philosophy of µP4’s architecture
resembles the Click modular router[24]. Click allows composing
packet processing modules, called elements, that can be connected
together using push or pull ports to create a directed graph. The
edges of the graph determine the flow of packets. µP4’s approach
slightly differs—µPA’s interfaces allow control and data transfer
along with a packet. Further, the Click framework is targeted for
general purpose CPUs while µP4 targets P4-programmable devices.

10 Conclusion
Dataplane programs are evolving to be complex and diverse with
novel use cases, such as those arising from in-network compute. At
the same time, we are also starting to see a variety of target devices.
We believe that the programming model must facilitate writing
portable, modular and composable programs. To support this, we
introduce µP4 which raises the level of abstraction from target-
specific packet-processing pipelines and constructs. With µP4, users
can write target-agnostic, self-contained modules independently,
and compose them to build larger programs while supporting a
range of devices. We believe that µP4 will enable rapid innovation
in dataplane programming as users can contribute to and build on
portable libraries for packet-processing.
Acknowledgments.We thank the anonymous reviewers, our shep-
herd, Changhoon Kim, Dan Ports, and Vladimir Gurevich for their
valuable feedback. This work was supported in part by NSF grant
CNS-1413972, DARPA grant HR0011-17-C-0047, and gifts from Fu-
jitsu, Google, and InfoSys.

References
[1] Barefoot Academy. 2019. Introduction to Data Plane Development with P416,

Tofino and P4 Studio SDE. https://barefootnetworks.com/barefoot-academy/.
[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’14). ACM, San Diego, California,
USA, 113–126.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the 2013 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’13). ACM, Hong Kong, China, 99–110.

[5] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon
Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

https://barefootnetworks.com/barefoot-academy/

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

et al. 2017. dRMT: Disaggregated Programmable Switching. In Proceedings of
the 2017 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17). ACM, Los Angeles, CA, USA, 1–14.

[6] The P4 Language Consortium. 2013. switch.p4 program. https://github.com/
p4lang/switch/.

[7] The P4 Language Consortium. 2018. P416 Language Specification. https://p4.org/
p4-spec/docs/P4-16-v1.1.0-spec.html.

[8] The P4 Language Consortium. 2019. The BMv2 Simple Switch target. https:
//github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md.

[9] The P4 Language Consortium. 2019. P416 Reference Compiler. https://github.
com/p4lang/p4c.

[10] The P4 Language Consortium. 2019. P416 Portable Switch Architecture (PSA).
https://p4.org/p4-spec/docs/PSA-v1.1.0.html.

[11] The P4 Language Consortium. 2019. v1model.p4 - Architecture for
simple_switch. https://github.com/p4lang/p4c/blob/master/p4include/v1model.
p4.

[12] Advait Dixit, Kirill Kogan, and Patrick Eugster. 2014. Composing Heteroge-
neous SDN Controllers with Flowbricks. In IEEE 22nd International Conference
on Network Protocols (ICNP ’14). IEEE, Raleigh, NC, USA, 287–292.

[13] Michael D. Ernst, Greg J. Badros, and David Notkin. 2002. An Empirical Analysis
of C Preprocessor Use. IEEE Transactions on Software Engineering 28, 12 (2002),
1146–1170.

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program De-
pendence Graph and Its Use in Optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (July 1987), 319–349.

[15] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming
Language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’11). ACM, Tokyo, Japan, 279–291.

[16] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,
Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform
Language and Compiler for Data Plane Programming on Heterogeneous ASICs.
In Proceedings of the 2020 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’20). ACM, Virtual Event, NY, USA, 1–14.

[17] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013. Design
principles for packet parsers. In ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems (ANCS). ACM/IEEE, San Jose, CA, USA,
13–24.

[18] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to Virtualize
the Programmable Data Plane. In Proceedings of the 12th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT ’16). ACM, Irvine,
CA, USA, 35–49.

[19] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The
P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’19). ACM, Seaside, CA, USA, 1–9.

[20] Internet Engineering Task Force (IETF). 2019. IPv6 Segment Routing Header
(SRH). https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-22.

[21] Internet Engineering Task Force (IETF). 2020. SRv6 Network Programming.
https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming-15.

[22] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor:
A Compositional Hypervisor for Software-Defined Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’15). USENIX
Association, Oakland, CA, 87–101.

[23] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling
Packet Programs to Reconfigurable Switches. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’15). USENIX Association,
Oakland, CA, 103–115.

[24] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Transactions on Computer Systems 18, 3
(Aug. 2000), 263–297.

[25] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa, Jeongkeun Lee,
Jayaram Mudigonda, Puneet Sharma, and Yoshio Turner. 2013. Corybantic:
Towards the Modular Composition of SDN Control Programs. In Proceedings of
the Twelfth ACMWorkshop on Hot Topics in Networks (HotNets-XII). ACM, College
Park, MD, USA, 1–7.

[26] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software Defined Networks. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’13). USENIX Association,
Lombard, IL, USA, 1–13.

[27] Barefoot Networks. 2019. Tofino. https://barefootnetworks.com/products/brief-
tofino/.

[28] David A. Padua and Michael J. Wolfe. 1986. Advanced Compiler Optimizations
for Supercomputers. Communications of the ACM (CACM) 29, 12 (Dec. 1986),
1184–1201.

[29] Milad Sharif. 2018. Programmable Data Plane at Terabit Speeds. https:
//conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf.

[30] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches.
In Proceedings of the 2016 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’16). ACM, Florianopolis, Brazil, 15–28.

[31] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In Proceedings of the 2016 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’16). ACM, Florianopolis, Brazil, 44–57.

[32] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. 2020.
µP4. https://github.com/cornell-netlab/MicroP4.

[33] Hardik Soni, Thierry Turletti, and Walid Dabbous. 2018. P4Bricks: Enabling
multiprocessing using linker-based network data plane architecture. (Feb. 2018).
https://hal.inria.fr/hal-01632431 (working paper or preprint).

[34] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. 2018. Debugging P4 Programs with Vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, Budapest, Hungary, 518–532.

[35] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan RK Ports,
and Aurojit Panda. 2020. Multitenancy for Fast and Programmable Networks
in the Cloud. In 12th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud ’20). USENIX Association, Virtual Conference, 8.

[36] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). IEEE Press, Piscataway, NJ, USA,
439–449.

[37] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
HyperV: A High Performance Hypervisor for Virtualization of the Programmable
Data Plane. In 26th International Conference on Computer Communication and
Networks (ICCCN ’17). IEEE, Vancouver, BC, Canada, 1–9.

[38] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Lightweight
Virtualization and Composition Primitives for Building and Testing Modular
Programs. In Proceedings of the 14th International Conference on Emerging Net-
working EXperiments and Technologies (CoNEXT ’18). ACM, Heraklion, Greece,
98–111.

Appendices
Appendices are supporting material that has not been peer re-
viewed.

A Interface Declarations in µPA
In Fig. 11, we present the declarations of Unicast, Multicast and
Orchestration interfaces discussed in §4.1. Their runtime parame-
ters allows programmers to express powerful forms of composition
using the apply method.

B Example Multicast Program
Programmers can use set_mc_group method in actions or apply
blocks to set a replication group for the packet. To replicate packets
by spawning multiple linear µP4 pipelines, µPA’s multicast engine
extern provides two applymethods. Fig. 12 illustrates the use of an
apply method that provides values for an instances of im_t and an
out parameter of type PktInstId_t for each replica. The instance
of im_t contains output port already set for the replica of the packet.
The second argument provides packet instance identifier to identify
the replica. Finally, the call to enqueue method of mc_buf joins all
the forked pipelines. This is analogous to pthread_join.

The set_buf and apply(pkt, im_t, out O)methods shown in
Fig. 6 facilitate nested invocation of µP4 packages with Multicast
interface in linear µP4 pipelines.

C µP4C Midend Transformations
Header stack transformation. µP4 allows the use of header stacks
with known size at compile-time. µP4C replaces each header stack
instance with multiple instances of the header type. It transforms

https://github.com/p4lang/switch/
https://github.com/p4lang/switch/
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-22
 https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming -15
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://github.com/cornell-netlab/MicroP4
https://hal.inria.fr/hal-01632431

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster

// Unicast

Unicast <H,M,I,O,IO >(pkt p, im_t im, in I in_param , out O out_param , inout IO inout_param) /* Runtime params */ {

parser u_parser(extractor ex, pkt p, out H hdr , inout M meta , in I in_param , inout IO inout_param);

control u_control(pkt p, inout H hdr , inout M m, im_t im, in I in_param , out O out_param , inout IO inout_param);

control u_deparser(emitter em, pkt p, in H hdr);

}

// Multicast

Multicast <H,M,I,O>(pkt p, im_t im, in I in_param , out_buf <O> ob) /* Runtime params */ {

parser m_parser(extractor ex, pkt p, out H hdr , inout M meta , in I in_param);

control m_control(pkt p, inout H hdr , inout M meta , im_t im, inout I in_param , mc_buf <H,O> mob);

control m_deparser(emitter em, pkt p, in H hdr);

}

Orchestration <I,O>(in_buf <I> ib, out_buf <O> ob) /* Runtime params */ {

control o_control(pkt p, im_t im, in I in_param , out_buf <O> ob);

}

Figure 11: Interface declarations in µP4’s architecture.

control mc(pkt p, hdr_t h, im_t im,

mc_buf<hdr_t, out_t> hb) {

mc_engine mce; PktInstId_t id;

out_t oa; // some out args

action replicate(GroupId_t gid) {

mce.set_mc_group(gid);

}

table MulticastRouting{ key = { ... }

actions = { replicate; }

}

table mac{ ...}

apply {

MulticastRouting.apply();

mce.apply(im, id); // similar to C's fork

mac.apply();

hb.enqueue(h, im, oa);

}

}

Figure 12: An example usage of Multicast extern.

operations on the header stack instances into appropriate built-
in method calls. In P4 parser blocks, programmers can use next
and last operations to iterate through the stack. These opera-
tions along with lastIndex can be used to write loops in parsers
to extract instances in header stack. µP4C unrolls such loops by
replicating the parse state and replaces the above operations with
appropriate header instances in the state replicas. For push_front
and pop_front operations on stack instances provided by P4, µP4C
transforms them into a series of assignments and built-in method
calls of header instances. For example, assume that hs is a header
stack instance of size 3. µP4C will synthesize hs0, hs1, hs2 header
instances where hs.hs_inst.push_front(1) is replaced with hs2
= hs1, hs1 = hs0 and hs0.setInvalid().
Variable-length header transformation. While µP4 allows program-
mers to define variable-length header types, it imposes a constraint
that their variable-length fields must contain integer number of
bytes at runtime. µP4C splits any header types containing fixed and
variable-length fields into multiple types, where each type contains
either fixed-length fields or the variable-length field. µP4C trans-
forms every parser state with two-argument extract method call,

used to extract variable-length header, into a sub-parser. It splits
the header type of the instance in the first argument into multiple
header types, where each type contains either fixed-length fields
or the variable-length field. Every state in the sub-parser extracts a
fixed-number of bytes from the packet byte-stream. The sub-parser
contains a state having the second argument (size of the variable-
length field) as the expression in its select statement. The select
statement has a case-list enumerating all possible values up to spec-
ified maximum size of the variable-length field. For each select case,
the sub-parser transits to a state extracting a fixed number of bytes
in the variable-length field. For example, if variable-length field
has maximum size of 40 bytes, µP4C creates 40 states extracting
different number of bytes. The explosion in terms of the number of
states would only increase the number of entries in the transformed
MAT for the parser.
Packet-processing schedule. If the main µP4 program or any of its
callees performs compile-time packet replication using copy_from
method of pkt, µP4C extracts threads and prepares PPS for the
µP4 program with orchestration interface. µP4C constructs a Pro-
gram Dependence Graph (PDG) [14] having statements as nodes
and dependencies among them as edges. It performs a series of
transformations on PDG to compute PPS defined in §5.4.

For every initialization statement of a pkt instance, we define
an access-range, which is analogous to the concept of live range. It
is defined as a span of program statements, on every possible path
in the PDG, until the next initialization of the instance is reached.
We merge overlapping access-ranges of multiple initializations of
the same pkt instance. If an instance has non-overlapping access-
ranges, we synthesize a new instance for every access-range to
create a one-to-one mapping between them.

Inspired by program slices [36], we define a packet slice based
on access-ranges. A packet slice of a pkt instance is an executable
subset of PDG which consists of all the program statements affect-
ing the instance’s value in its access-ranges. A set of initialization
statements of a pkt instance with overlapping access-ranges is con-
sidered as a slicing criterion for a given packet instance. Packet
slices may have multiple entry and exit points due to the presence
of conditional statements. We compute packet slices from the PDG
of control block using a method similar to one described in [14].
Essentially, we perform a graph traversal in the reverse direction

Composing Dataplane Programs with µP4 SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

struct e_t {}; struct h_t { ... };

prog(pkt , im_t , out h_t);

test(pkt , im_t , out h_t);

log(pkt , im_t , in h_t , in h_t);

control validate(pkt p, im_t i, out_buf <e_t > ob) {

pkt pt, pm; im_t it, im;

/*slice*/ h_t hp, ht;

/* # */ apply {

/* 1 */ pm.copy_from(p); // c1

/* 1 */ im.copy_from(i);

/* 3 */ pt.copy_from(p); // c3

/* 3 */ it.copy_from(i);

/* 2,1 */ prog.apply(p, i, hp);

/* 3,1 */ test.apply(pt, it, ht);

/* 1 */ if (hp != ht) {

/* 1 */ log.apply(pm, im, hp, ht);

/* 1 */ ob.enqueue(pm, im);

/* 1 */ }

/* 3 */ im.set_out_port(DROP);

/* 2 */ ob.enqueue(p, i);

/* 3 */ ob.enqueue(pt, it);

}

}

Figure 13: Slicing for multi-packet processing.

of edges from every exit point statement in the access ranges until
the initialization statements in the criteria are reached. The graph
traversal continues until all possible definitions of every variable
used in the visited statements are reached. If any variable or extern
instance is involved in anti-dependency, we resolve it by introduc-
ing a copy of the variable. Fig. 13 shows an example program that
is sliced with respect to three instances: pm, p and pt.

Packet slices of different instances may have common program
statements due to control and data dependencies. Therefore, a
packet slice may have method call statements processing different
pkt instances than the initialization statements used in slicing crite-
ria. For the program shown in Fig. 13, slice 1 pertaining to instance
pm shares program statements with slices 2 and 3 related to p and
pt, respectively. We create a packet-processing thread per instance

by excluding such method call statements from every packet slice
but we maintain dependencies by creating inter-thread dependency.
All other common program statements are excluded from threads
of pkt instances. We term such statements CPS nodes and maintain
their control and data dependencies with the thread nodes. We
associate every thread with an identifier, thread-id, and synthesize
metadata for it. µP4C synthesizes if-conditional statements in every
thread to execute its program statements only if its id value is set in
thread-id metadata. We realize PPS by using target-specific replica-
tion constructs (e.g., clone functions for V1Model) and setting next
ids of next threads in thread-id metadata. We follow a similar
approach to extract threads associated with in_buf instances. The
merge and to_in_buf methods of out_buf allow to add thread
nodes and control dependency among them in PPS.

We transform PDG to PPS graph by coalescing all the nodes in a
thread to a single node while maintaining their control and data
dependencies with CPS and other thread nodes. Then, we synthesize
a variable to transform every control dependency among thread
nodes to a data dependency. The thread, which is depended on,
sets the variable with a constant value and the other thread uses
the variable in the predicate of the new if-conditional statement
to continue processing on the control path. If a PPS has a directed
cycle involving thread nodes, PPS is not serializable. If the target
architecture does not have the capability to process multiple copies
of a packet at the same time, µP4C raises an error and lists program
statements involved. However, a PPS can have cycles involving
at most one thread node and one CPS node. To determine the
execution thread for CPS nodes, we compute strongly connected
components (SCCs) of the PPS graph. In each component, there
can be exactly one thread node and one or more CPS nodes. We
further transform the PPS into a DAG by coalescing CPS nodes
in a component to its thread node. PPS can still have CPS nodes
not part of any SCC, such nodes can be executed as a part of any
thread. We schedule such CPS nodes while mapping the threads to
the programmable blocks of the target architecture.

	Abstract
	1 Introduction
	2 Goals, Challenges and Insights
	3 The P4 Framework
	4 P4 Architecture (PA)
	4.1 P4 Pipelines and Interfaces
	4.2 Logical Externs

	5 P4 Compiler (P4C)
	5.1 Design Overview
	5.2 Static Analysis
	5.3 Homogenizing Programmable Blocks
	5.4 Preprocessing for P4C backend
	5.5 Mapping to the Target Pipeline

	6 Implementation
	6.1 Comparison with P4
	6.2 Supporting New Target Architectures
	6.3 P4C's TNA Backend for Tofino
	6.4 Limitations

	7 Evaluation
	7.1 Composing Packet-Processing Layers
	7.2 Composing Network Functions (NFs)
	7.3 P4 on Commodity Hardware

	8 Discussion and Future Work
	8.1 Overheads and Optimizations
	8.2 Future Directions

	9 Related Work
	10 Conclusion
	References
	A Interface Declarations in PA
	B Example Multicast Program
	C P4C Midend Transformations

